DISKMON USER’S GUIDE

PUBLISHED BY: COMPUTHINK

965 West Maude Avenue
Sunnyvale, CA 94086
(408) 245-4033

AUGUST, 1979

COPYRIGHT® 1979, COMPU/THINK

All rights reserved. No part of this book may be reproduced in any form, by photostat, micro-
film, or any other means, without the written permission of the publisher.

o

TABLE OF CONTENTS

Page
Chapter 1 ABSTRACT .. o 1-1
Chapter 2 INTRODUCTION ... i e 2-1
Chapter 3 USER STANDARDS AND PROCEDURES, 341
Chapter 4 DISKMON OVERVIEWo e e e e 4-1
Chapter 5 DISKMON COMMAND SUMMARY v 5-1
File Parameter Conventions e 5-3
Chapter 6 DISKMON GENERAL DISK OPERATIONSoovv e, 6-1
$FORMAT (Prepare a diskette for use, erase a diskette) 6-1
$DIR {Obtain listing of programs and files on diskette) 6-1
SERASE (To erase a file from diskette) 6-1
$MEM (Display a section of memory) 6-2
SHALT (Clear RAM while preserving DISKMON fink) 6-2
$GO (Execute a machine language program) 6-2
$SAV (Save various programs/files on diskette) 6-3
$L0D (Load various programs/files from diskette) 6-3
$XEQ (Automatically LOAD and Execute programs) 6-4
$ODISK (Open disk data files for read or write) 6-5
SCDISK (Close a disk datafile) 6-5
$RDISK (Read the next sequential record) e hae e 6-5 !
$WDISK (Write a record out to disk sequentially) 6-5 ‘
$RDI/SK (Alternate — Direct Access Read) 6-5
$WDISK (Alternate — Direct Access Write) 6-5
Sequential Write Access 6-5
Sequential Read Access ceeei... 66
Direct Access Discussion 6-7
Printer Operations ($BLIST, $PRNT) ..o oo oo e 6-8
Chapter 7 STRING ANOMOLIES e i, 7-1
PROGRAM ANOMOLIES oo 7-1
PROGRAMMING HINTS N 7-2
TROUBLESHOOTING i 7-3
Chapter 8 DISKMON UTILITY PROGRAMS i, 8-1
Chapter 9 MISCELLANEAo e e 9.1
DISKMON SPECIAL MEMORY LOCATIONS 9.2
ASSEMBLER PROGRAMMER'S JUMPTABLE 9.3
Chapter 10 APPENDIX A S P S 10-1

LISTING OF DISKMON UTILITY PROGRAMS

Aed

~

Chapter 1 — ABSTRACT

The DISKMON operating system was developed for the Commodore PET 2001 computer
as a disk operating system. The DISKMON operating system adds nine additional operating
system commands in the READY mode on the PET, and adds seven additional extended disk
instructions to the Microsoft BASIC resident in the PET. The DISKMON operating system
requires approximately 8K bytes of ROM in block BO0O of PET memory.

This manual is the DISKMON User’s Guide and contains much of the information neces-
sary to supply BASIC and 6502 Assembler language programmers with technical information on
the DISKMON operating system.

Chapter 2 — INTRODUCTION

Thank you for purchasing the DISKMON system. The DISKMON operating system was
developed for the Commodore PET 2001 computer as a disk operating system. The DISKMON
operating system adds nine additional operating system commands in the READY mode on the
PET, and adds seven additional extended disk instructions to the Microsoft BASIC resident in
the PET. The DISKMON operating system requires approximately 8K bytes of ROM in block
B0OOO of PET memory,

This manual is the DISKMON User’s Guide and contains much of the information neces-
sary to supply BASIC and 6502 Assembler language programmers with technical information on
the DISKMON operating system. A complete listing of the 6502 Assembler modules comprising
the DISKMON operating system can be found in the manual: DISKMON ASSEMBLER LISTING.

The DISKMON operating system is supplied in ROM along with the disk system. There-
fore DISKMON is always resident in the PET when it is turned on. No complicated loading
procedure is required. Right after the PET is turned on the following instruction(s) will initialize
the DISKMON operating system.

SYS(11%4096)
or
SYS45056

Either instruction need only be executed once after turning on the PET. Once initialized, the
DISKMON operating system stays initialized until the PET is turned off.

The DISKMON operating system is designed to support the 6502 Assembler programmer
as well as the Microsoft BASIC programmer. Machine language programs, as well as BASIC
programs can be saved on disk and automatically loaded and exe¢cuted. One command allows one
program executing in the PET to request that it be erased and that another program be loaded
into the PET and executed. Such programs may share variables or start fresh at the programmer’s
option. Also a BASIC program may load in a machine language program and vice versa.

The DISKMON operating system also supports any of a line of paralle! printers attached
to the parallel user port via Compu/Think’s printer interface cable, A special extended BASIC in-
struction is provided in DISKMON to support this range of printers right from the BASIC program.

Diskette Insertion Procedure

After the initialization command (SYS45056), insert the diskette labeled “DEMO" into
the lefthand drive (Drive number one). Notice that the diskette has a %" notch on one edge. The
diskette should always be inserted in such a way that the notch is pointing straight up. Diskettes
should be handled by the edges with great care. Before attempting any commands on the supplied
demo diskettes, we suggest that you carefully read through this entire manual and study the
various DISKMON commands in detail.

Chapter 3 — USER STANDARDS AND PROCEDURES

The most important aspect of the DISKMON/user relationship is that the user treat his
DISKMON operating system correctly. Without this love and understanding, the DISKMON sys-
tem may bite the user unexpectedly causing loss of data and a premature end to the relationship
perhaps even requiring a power-off/power-on of the PET.

BEFORE STARTING

Before starting to use the DISKMON operating system, the user must purchase several
diskettes. These should be 5 inch soft sectored 1BM format diskettes. We recommend the DYSAN
model 104 (available from dealers). The user should always purchase these diskettes in pairs. The
first DISKMON standard is that every diskette must have its back-up diskette.

NEVER WRITE TO A DISKETTE WHICH DOES NOT HAVE A BACKUP COPY.

Disk errors are infrequent, especially compared to cassette 1ape; however, they do occur from
time to time. During a write operation, a disk write error may garbage important disk data.
Therefore the user always keeps a back-up copy of each diskette and makes frequent copies from
the working copy to the back-up copy using the DISKCOPY utility program supplied with
DISKMON. Users who do not have a current back-up copy of each diskette, deserve to be bitten.
As a matter of fact, one diskette is known 10 have been destroyed when the user sat on it! When
you buy your diskettes we suggest that you purchase a set of vinyl diskette holders. They come
in ring binders and are out standard for storing diskettes for the DISKMON operating system.
Each diskette and its back-up copy should be stored on the same page of the vinyl holder. These
vinyl diskette holders are available from many of our dealers.

POWERING UP
When powering up the PET and its peripherals, the following procedure is recommended.

(M ALWAYS POWER THE PET ON FI RST.
{(2) ALWAYS POWER THE PRINTER ON SECOND.
(3) ALWAYS POWER THE DISK ON THIRD.

POWERING DOWN
When powering down the PET and its peripherals down, the following procedure is
recommended.
(M) ALWAYS POWER THE DISK OFF FIRST.
(2) ALWAYS POWER THE PRINTER OFF SECOND.
(3) ALWAYS POWER THE PET OFF THIRD.

NOTE: Do not insert or remove any daughter boards from the slots of an expandamem while
the PET’s power is on.

STARTING A NEW DISK

Each time a raw (new) disk is entered into the DISKMON system, it must be formatted
as the very first operation performed by DISKMON. When you purchase new diskettes we recom-
mend that you immediately FORMAT both sides of your entire supply.

Do not save or write any program or data files on the diskette until you have read and
understood these conventions. Every DISKMON user musi adhere to these disk file naming
conventions in order for the common disk utilities to work properly.

Simply stated a naming convention is an agreed upon method of naming things so that
these things can be distinguished by name alone. The DISKMON naming conventions are designed
so that file types can be distinguished both by humans and by DISKMON from the file name alone.

First of all, DISKMON disk file names can be from one to sixteen characters in length,
but no longer. NEVER give a DISKMON file an all blank or null file name.

Each file is distinguished as to type by the following suffix conventions:

BASIC PROGRAM FILES (NONE)
MACHINE LANGUAGE PROGRAM FILES GO
ASSEMBLER SOURCE FILES ASM
OBJECT FILES .OB]
FIFTH SOURCE FILES .FIF
FORTRAN SOURCE FILES .FOR
PLM SOURCE FILES .PLM
PASCAL SOURCE FILES .PAS
SEQUENTIAL DATA FILES .DAT
LINK EDIT CONTROL STATEMENTS CNTL
DIRECT ACCESS FILES .DIR

The user may further distinguish other data file types which he may develop from time to
time with a . followed by any suffix of his choosing except one of the above. As an example take
the following file names:

BREAKOUT
Its name tells us it is a BASIC program

NAMES.DAT
A sequential data file

DSKSAVE.ASM
An Assembler source file

GRAPHICS.FOR
A Fortran source file

MAILING.DIR
A Direct Access file

BOLERO.MUS
A user defined data file of category .MUS

DISK DATA FILES

The DISKMON operating system supports ASC data files and program files. Program files
are BASIC program files and machine language program files (.GO). All other data files are con-
sidered ASC data files and can be rcad with the $RD/SK instruction. In order for the DISKMON
common utility programs to work correctly, all ASC data files have a final record usually termed
“EQOF.” The EOF record is the last record on every ASC data file.

EOF is an acronym that stands for End Of File. DISKMON automatically writes a null
character (" ") when the $CD/SK (closedisk) command is executed. Again, this EOF character is
automatically placed as the last character in any particular file. This automatic EOF allows the
user to easily test (during READ) for the nuli character.

3-2

Chapter 4 — DISKMON OVERVIEW

The DISKMON operating system is designed far use with five inch mini floppy diskettes.
The $FORMAT command of the DISKMON operating system formats each diskette for forty
(40) tracks. The DISKMON operating system operates with a dual density controller, In dual
density, each track contains five thousand one hundred twenty (5120) bytes of data space. A
diskette formatted by DISKMON always has a disk directory located on absolute track zero.
Each diskette has a total data capacity of 204,800 bytes (dual density) per side, and both sides of
the diskette may be used with DISKMON.

The DISKMON operating system is designed for speed of data access. This is accomplished
by reading an entire disk track at a time. It is interesting to note that, with the DISKMON
operating system, the dual density controller makes data access almost twice as fast as with the
single density controlier The DISKMON operating system always turns the disk drive motor off
after each operation to reduce diskette wear. When DISKMON recognizes an open disk command
it automatically starts the disk drive motor. After .5 seconds the disk drive motor will attain the
RPM speed necessary for READ/WRITE functions. From the motor off position, the DISKMON
operating system will load a 20K PET program in less than three seconds (dual density). Similarly,
a 32K program will load in less than five seconds (dual density).

The DISKMON operating system is automatically self-organizing. All free disk tracks are
automatically organized and made ready for the next file allocation without any required inter-
vention by the user. This totally eliminates time consuming disk copy operations to reorganize
free tracks on a diskette.

The minimum space allocated to a file or program in the DISKMON operating system is
one track. A single file may occupy multiple tracks, but no two files are ever allocated to the
same physical track. Allocation of files to physical disk tracks is accomplished through the disk
directory on physical track zero of each DISKMON diskette. The format for the disk directory is
as foilows:

SINGLE DISK DIRECTORY ENTRY

FILE NAME (16 BYTES)
RELATIVE TRACK NUMBER (1BYTE)
INDEX DATA (8 BYTES)

FIGURE 4a: Each directory entry is a total of twenty-five (25) bytes in length. The disk
directory contains forty (40) such entries. The disk directory is 1,000 bytes long, and is read into
locations (hex) ABOO through AEES in PET memory.

Any DISKMON diskette may have up to thirty-nine files allocated to it {onc track is
always reserved for the directory). If any file on a diskette requires more than a single track, the
diskette will have less than 39 files allocated on it.

41

Chapter 5 — DISKMON COMMANDS

When you make the “link”* to DISKMON with the command SYS11+4096 (or $YS545056),
you have an additional set of commands available. Nine of these are considered direct commands
and six are parts of extended BASIC. As in the “normal” commands on the PET, the distinction
between direct commands and extended BASIC instructions is somewhat blurred by the fact that
all BASIC commands (with very few exceptions) can be executed in direct mode and most direct
commands can be used in program mode (although most of them cause the program to stop)

The nine extended direct commands are:
m $FORMAT,D
Prepares a new diskette for use.
(2) $DIR,D
Displays the directory information.
{3) $LOD,D,F3
L.oads a program into memory from disk.
{4) SAV,D,F,58,E3
Saves a program on disk.
(5) $ERASE,E,F$
Erases a program or file from disk.
(6) $GO
Begins execution of a machine language program,
(7) SHALT
Resets memory. ’ .
(8) SMEM,A$
Displays a page of memory.
(9) $BLIST.F§
Prints a listing of the current program in memory, via the user port.
The six extended BASIC instructions are:
{1) $ODISK,D, T$,F3$,13
Opens a datafile,

(2) SCDISK
Closes a datafile.

(3) $RDISK,R$
Reads a record.

4) $WDISK,R3
Writes a data record.
(5) $XEQD,F3
Loads and runs another program.
(6) $PRNT.PS
Print a string on a parallel printer equipped with a Compu/Think cable.

5-1

We will discuss the exact details of each of these commands in the following section.

SECTION 1:
GENERAL DISK OPERATIONS
$FORMAT,D
$DIR,D
$ERASE,D,F$

SECTION 2:
MEMORY OPERATIONS
SMEM,A$
SHALT
$GO

SECTION 3:
PROGRAM FILE OPERATIONS
$SAV.D,F$,S3,E$
LOD,D,F
SXEQ,D,F$

SECTION 4:
DATAFILE OPERATIONS
$ODISK,D,T$,F$.1$
$CDISK
$RDISK,R$
$WDISK,R$

SECTION S5:
PRINTER OPERATIONS
$BLISTFS
SPRNT.PS

NOTE: All commands may be abbreviated by using a $ followed by the first letter of the com-
mand, i.e., $FORMAT,D — may be abbreviated as $F,D. Similarly, $SAVE,], “PROGRAM" —
may be abbreviated as $S,7, “PROGRAM’.

IMPORTANT NOTE:
We will be making reference to three kinds of variables and two kinds of constants.

(1)
(2)

(3)

(4)

STRING VARIABLES are fields of ASCll-coded character data designated by a
variable name ending with a dollar sign.

STRING CONSTANTS are fields of ASCll-coded character data enclosed in
quotation marks (i.e., “ANY CHARACTERS — X1Y223")

INTEGER VARIABLES are two-byte binary numbers in two's — complement

format. They are designated by a variable name ending with a percentage sign
(i.e., A%, AB%, A1%, A{l1)%).

FLOATING-POINT VARIABLES are numbersstored in aspecial format designated
by the PET’s system. They are designated by variable names without any special
characters appended {i.e., A=5, X=6.5).

NUMERIC CONSTANTS are numbers that are designated in a program by their
numerals. The PET's operating system does not allow these to be designated as
integers of the two-byte variety;i.e., A%=5 is OK and the variable A% is stored as
two bytes. You cannot, however, optimize memory by designating an integer
constant with a percent sign. A%-5% is therefore a syntax error.

5-2

FILE PARAMETER CONVENTIONS

DISKMON allows you to use numeric constants or any floating-point variable names for
numeric parameters (the drive number and record number). It also allows you to use any string
constant or string variable for other parameters. This allows you a great deal of freedom, but can
lead to confusion. To help eliminate this potential confusion, we suggest conventional variables
for each of these parameters:

Disk file name — F$
Disk file record — RS
Drive numher — D
Type access code (“W', “R", or “D”") — T$
Note: The Type access Code (“W', “R”, “‘D”) must a/ways be enclosed in quotation marks.
Index data string — 14
Record number — N
Starting address — S$
Ending address — E$

We recommend that you simplify your program debugging problems by using these
variables in all your programs.

Chapter 6 — SECTION 1: GENERAL DISK OPERATIONS

$FORMAT,D
THIS IS A CRITICAL COMMAND!!!

It prepares a new diskette (one side at a time) for use. Every diskette that you use on this
system must be formatted with this command BEFORE it is used with any other command.
There are a wide variety of unpredictable antics that your equipment will perform if you attempt
to use a diskette that has not been formatted. The best way to avoid any of these errors is to
prevent any unformatted diskettes from finding their way into your supply. When you get a new
supply of diskettes, just sit down and format both sides of all of them before placing them in
your supply of available blanks. If you don’t have any unformatted diskettes around, you can’t
have any of these errors.

The parameter D in the example above can be replaced by any valid numeric constant
or floating-point variable. [t designates the drive on which the formatting operation is to be
performed. As a convention however, we suggest that you use the varible D.

EXAMPLES:
$FORMAT,D
$FORMAT,1

Both perform the same if D=1.

This command can also be used to erase (re-format) one side of a diskette. This enables
the diskette to be reused.

$DIR,D

This command displays the names of the programs and files stored on the diskette desig-
nated by the numeric constant or floating-point variable D (in the example above). In all of our
examples D represents a variable which designates the drive on which the operation is to be
performed.

$ERASE,D,F3$

This command erases the program or file from the diskette and remaves the directory
entry for the file designated by F$. The file to be erased is designated by a string variable (F$
in our example above) or a string constant. Again, the variable D represents the drive number
(1 0or2).

EXAMPLES:

$ERASE,A, FILENAME™

$ERASE,A,F$ (Where “FILENAME” has already been assigned to F§$)
$ERASE,1,"FILENAME”

$ERASE,1,F}

These commands will all perform identicaly if D=1 and F$="FILENAME". The program
named “FILENAME" will be erased from the diskette on drive #1.

SECTION 2: MEMORY OPERATIONS

SMEM, A3
This command displays a section of the PET’s memory on the screen, The portion of
memory is designated by an address in four-digit hexadecimal format. The hexadecimal number
is assigned a string variable or constant value (A$ in the example above).
EXAMPLES:
SMEM, "BO0O"
SMEMAS

Both perform the same if A$="B000". A portion of memory beginning at address perform
45056 ($B000) will be displayed.

SHALT

This command clears the computer’s memory almost as though you had turned it off and
back again. The “link” to DISKMON however, is preserved when this command is executed.

$GO

When a machine-language program is loaded into memory, a normal “RUN" command
will not begin execution of that program (the pointers are handled differently from the way BASIC
program pointers are set). This command will begin execution of the machine language program.

SECTION 3: PROGRAM FILE OPERATIONS

SAV,D,F,5%,E$

This command actually has two formats — one for machine-language programs and one
for BASIC programs. The format above is used for machine-language programs. This command
designates a block of memory with two hexadecimal numbers assigned to strings — either a string
variable or a string constant. In our example above, the starting address of the machine-language
program is designated by S$ and the ending address is designated by E$. The hexadecimal format
is exactly the same as for the MEM,A command. The block of memory stored in this manner is
given the name F$ (any string variable you wish to use — or a string constant) and stored on the
diskette in drive D. '

EXAMPLES:

$SAV.D,F$,S$,E$
$SAV,1,“FLASH.GO"“0F00"* OFF0"

Both perform the same if D=1, F$="FLASH.GO", §3="0F00”, and E$=""0FF0". The
machine-language program (aiready in memory) starting at address 3840 ($0F00) and ending at
address 4080 ($0FFO) is stored on the diskette in drive 1 under the name “FLASH.GO’. When
this program is loaded back into memory, it will automatically be located at the same memory
addresses (overlaying the same block of addresses). Ending address will always be a multiple of
512 bytes or 1 sector, and not necessarily what is specified.

This command may be used to save ANY block of data from memory. Creative program-
mers might use it to store a large block of variables or various sections of a program to use as
overlaid subroutines.

$SAVD,F$

This is the format used to save BASIC programs. [t is exactly the same as the format for
machine-language programs except that the starting and ending addresses are not specified. All
other parameters are identical.

LOD,D,F

This command is the reverse operation of the §SAVD,F$ command. The parameters D
and F$ still refer to the drive and file name, respectively. This command may also be used to load
a machine-language program — which will then be executable by a $GO command. BASIC
programs, of course, may begin execution with a RUN command. Machine-language programs,
when loaded into memory, will automatically be loaded into the same block of memory as was
specified by the S$ and E$ addresses, when the program was saved on diskette.

A very important alternate format is:
$LODD,F§

This version of the command performs the same loading actions, but does not reset any
of the program pointers. It is extremely useful for overlaying a variety of .machine-language
subroutines from a single BASIC program. BE VERY CAREFUL when using this technique. The
machine-language subroutines loaded in this manner cannot be allowed to interfere with the

BASIC program. To utilize this command requires that the user be somewhat familiar with
assembly Janguage programming,

Since the only syntax difference between the different forms of the $L0OD,D,F$ and
$LOD;D,F$ is the use of either a comma or a semicolon, you must exercise great care whenever
L= you use this command in a program. Mistakes in direct mode tend to be less costly and frustrating.

6-3

$XEQD,F$

This command performs two functions — it first loads into memory the program desig-
nated by F$ from the diskette in the drive designated by D, and then it automatically begins
execution of that program. For a BASIC program, this is equivalent to the combination of
commands:

LOD,D,F:RUN
and for a machine-language program it is equivalent to:
LOD,D,F:GO

This command also has two formats -- again with the only distinction being the use of
cither a comma or a semicolon. The two different functions are usually described as CHAINING
to another program or OVERLAYING another program. The format described above represents
the chaining option. The primary disadvantage is that all the variables and pointers of the first
program are lost when the new program is brought into memory. The advantage is that you do
not have to pay attention to memory allocation. A small BASIC program can chain to a larger
BASIC program with no problem.

The alternate format is:
$XEQ,D,F}

This command loads the program desighated by F$ into memory from the diskette on
drive D and preserves the variables and other data (system pointers) in memory. It overlays only
the program area of memory. There is a user disadvantage to overlaying BASIC programs in this
manner. The PET's operating system allocates as much memory as necessary for the program and
begins allocating memory to variables immediately after the end of the program. If the program
loaded by this command is larger than the program which created the variable values, the variable
values will be jost. In some instances you can cause your system to “crash’ by the improper
allocation of memory. The only foolproof rule is to be sure that the first program in a group to
be overlaid on each other is the biggest one in the group. When you check the program sizes,
check the number of bytes free BEFORE the program is run. This will tell you how many bytes
are free before any memory is allocated to variables. Second loaded program must always be 512
bytes SMALLER than first or one sector smaller. There is another peculiarity involving the PET’s
treatment of string data that we will discuss again in a special section (“string variable anomolies’")
at the end of this chapter.

6-4

SECTION 4: DATAFILE OPERATIONS

Datafile operations are a bit more complex than any of the other operations and an
adequate explanation of the datafile commands requires subsections.

COMMAND PARAMETERS

$ODISK.D,T$,F3,1$

This opens a datafile on drive D for a type of access designated by T$. The name of the
file opened is designated by F$ and the index data is indicated by 1$. These terms will be fully
explained later.

$CDISK

This closes the datafile currently opened. If the file was opened for WRITE then this
command automatically writes a null character as an EQF,

$RDISK,R}$
This reads the next sequential record into the variable R$.

SWDISK,R$
This writes the contents of the variable R$ to the next record of the file.

$RDISK:N,R$
This reads the contents of record number N from a direct-access file into the variable R$.

SWDISK;N,R$
This writes the contents of R$ into record number N in a direct-access file.

FILE PARAMETERS

Datafiles contain only ASCII characters (string data). Numeric data is normally stored by
the proper numerals (using the STR$ and VAL functions for conversion). Numeric data can be
stored in a more compacted form by using the CHR$ and ASC functions for conversion. Unless
there is a recordsize problem, this is not usually worth the extra effort.

Each record has a carriage return CHR$(13) as the terminator. A record 30 characters
long will actually occupy 31 bytes on the diskette. This may be important to someone who really
wants to allocate the 5120-byte tracks extremely efficiently.

TYPES OF ACCESS

There are three types of file access in this system — sequential write (code W), sequential
read (code R), and direct access {code D).

I, SEQUENTIAL WRITE ACCESS
This is the only method by which a new diskette file can be created. The access code (T$
is our usual example) is “W", which represents WRITE.

$ODISK,D,T$,F3,13 ‘
$ODISK,1,"W’, “MAILING LIST""12/31/78"

Both perform the same if D=1, T$=""W", F$="MAILING LIST” and 1$=12/31/78. &
datafile named “MAILING LIST" is created on drive 1 in preparation for records to be written
to it. The directory alos contains an eight-character string of index data. If the file is to be
accessed by a direct-access method at some time in the future, the index data must have a special
structure that we will explain later. In our example, here, the file will only be accessed sequenti-
ally. The index data therefore, can be used to store any pertinent information. In this example,
the index data is used to show how current the data is:

$WDISK,R$
$WDISK,"HENRY JOHNSON"

This writes the contents of R$ (or a string) to the next record in the file.
$CDISK

This closes the file. in the WRITE mode it also automatically writes a null (*') record as
an end-of-file mark. Be sure that you do not have any other null records in your files — null
records are reserved for the end-of-file marker.

. SEQUENTIAL READ ACCESS

This is the only mode in which files not structured for direct access can be read. The
access code is *'R"” which represents READ. -

$ODISK,D,T$,F$,1$
$ODISK,1,"R’)“MAILING LIST’;I$

Notice the important difference in this pair of equivalent examples — the index variable
(1$ is our example) CANNOT BE REPLACED BY A STRING CONSTANT. The command will
open.the file named “MAILING LIST” on drive 1 for read access and place the index data into
the variable 1$5. The method of placing the data into |$ leads to a possible anomoly (the same one
mentioned in the section on program overlays) that is discussed at the end of the chapter.

There is an important feature of error trapping built into the system. If the file you
attempt to open is not on the designated diskette, the system sets location 44976 to a value of
255, That’s $AFBO in hexadecimal format. This allows you to set up your own error-handling
routines for a ‘‘file not found” error.

$RDISK,R$

There is no alternate version. The next record in the file is read into the designated
variable; As in all these command examples, any variable name can be used. For convention
purposes, we suggest that the string variable R$ be used to represent a record. The possible string
anomoly (see separate section on Anomolies) can occur on this operation.

$CDISK

This closes the file, but when READING a file does not write an end-of-file mark. You
may close the file after reading only part of it without destroying any of the remaining data.

6-6

" WI. DIRECT (UPDATE) ACCESS

This access mode is very powerful, but the file must be highly structured and the potential
for error requires extra caution. Back-up data is always important, but in this type of file, back-up
data becomes a critical necessity.

The access code for this mode is *“D’* and all files must have a defined number of records
that ALL are of a defined length. This information is stored in the first four characters in the
index data. (Index data is 8 characters long.)

Index data structure:

The first two characters in the index data are actually a compacted integer in the reverse
format common to 6502-based equipment. The integer contains the number of records in the
file. The next two characters are in the same format and define the length of the records in the
file. If you, in error, try to write a record of the wrong length to the file, DISKMON will respond
with 2 SYNTAX ERROR and stop execution of the program. The last four characters of the
index can be used in any way you wish. As long as these restrictions are met, however, you will
be able to do the following:

Extract any record from any position in the file, make any changes you wish to record,
and place it back in the file — all without disturbing the other records. That potential makes all
the effort that goes into maintaining this rigid file structure worthwhile.

See the '‘Creating a Random Access File” or RANDOM-FORMAT samplé prégrams for
examples of forming the proper index data. We suggest that you use the RANDOM-FORMAT
utility program to format your Direct Access Files.

The open and close commands are identical to those used for read access, so we won't
repeat them. The read and write commands are different, however.

$RDISK;N,R$

This reads the Nth record in the file into the variable R$. Other than the designation of a
particular record by number, this command works exactly like a sequential read. N can be any
numeric constant or valid floating-point variable within the range of record numbers.

$WDISK;N,R$
This reads the contents of R§ in memory and writes it to the Nth record of the file.

Notice the use of the semicolons in these commands. They serve as notice to the operat-
ing system that this is a direct operation. Be careful that you do not substitute commas.

Various utility programs (and their respective listings) to format, read, and update a
Direct Access File have been provided,

SECTION 5: PRINTER OPERATIONS

The two commands covered in this section describe the commercial printer support
available by connecting the proper cables {available from Compu/Think and various dealers)
from the proper type printer to the parallel port of your computer. If you have some other
type of printer (probably connected to the IEEE-488 port) these commands will not apply to
your system.

$BLIST,“F$"

This causes the BASIC program currently in memory to be listed on the printer. The
program name (“F$" is our example above) may be a string variable, but will usually be given as a
string constant and must be enclosed in quotes. It is used solely to print a program heading, This
command will not cause the system to load the named program into memory before listing it.

When the program is listed, it will be listed on individual pages (50 lines per page) with a
heading and page number at the top of each page. There are two assumptions made:
1) That there is a BASIC program in memory.
2) That you have positioned the printer to the top of a new page.

SPRNTXGT3,Y(1),R%A: "EXAMPLE”

This functions just like the normal PRINT command except that the resulting characters
are put on the printer paper rather than on the screen. Commas and semicolons have the same
effect. Both characters will automatjcally “pack” the characters together, i.e., $PRNT A,B will
print on the printer identically to $PRNT A;8.

6-8

v

Chapter 7 — STRING ANOMOLIES

The PET’s operating system handles string data with tables that hold the variable name,
the current length of the string, and the location where it actually begins. If you set a string
variable equal to a string constant in a BASIC program, the operating system will set the pointer
for that, string variable to the actual part of the program itself where the constant begins. This
is an efficient way to save memory, but it causes strange things to happen when you overlay
that program with another. The pointer remains the same but the data it points at is changed —
creating various unpleasant surprises.

A similar thing happens when a record is read from a disk file. DISKMON brings the
records into a buffer area and sets the pointer of the variable you have designated so that it
points at this buffer. The same thing is done for index data when a disk datafile is opened for
sequential read or direct update operations,

if you read several different variables from a disk datafile, they will all point to the same
place, so they will all be equal to each other. One example:

$RDISK,R$
$RDISK,Z$

The variable pointers for both R$ and Z$ will now point to the DISKMON buffer area.
The original data for R$ is lost and the two are equal to each other.

There is a cure for all of these problems, however. A peculiar-looking, but entirely valid
operation setting a string variable equal to itself will cause the PET’s operating system to move
the data into the string holding area and reset the variable pointer. Our example above would
change to:

$RDISK,R$
RE=R3
$RDISK,Z$

Now R$ will be held in the PET’s normal string area and Z$ will be in the DISKMON buffer.

In the same way, if your last operation on a string variable in a prograrm was to set it equal
to a constant, you must set it equal to itself before bringing in an overlay program that would
destroy the values. The PET would recopy that constant data into the string holding area and
reset the pointer.

PROGRAM ANOMOLIES

There are avariety of rather esoteric “bugs’ in the PET’s aperating system that may cause
problems. Some anomolies can occur when DISKMON is “‘linked’’ to the PET’s operating system.

1) Screen editor changes:

In long program lines (usually 77 characters or more) after the screen edit functions,
there are sometimes problems with “scrambled® characters appearing at the end of the line. In
some other cases, you might make a small change on a line that does not "‘take’ (when you list
the line again, the change was not made). Some other types of errors also occur when the screen
editor is used with DISKMON in residence,

If you encounter any of these problems, there is a rather simple cure — just restructure
the long program line and divide it into two or more shorter lines.

7-1

2) DISKMON commands as part of an IF statement sometimes execute when the
should not. The cure for this is a rather peculiar-looking, but valid command with a colon follow:
ing the THEN part of the IF ... THEN statement.

EXAMPLE:
50 IF PEEK(44976) () 255THEN$CDISK:GO TO 90

This line will often close the disk no matter what the value of PEEK(44976) may be. If
we change it to:

50 IF PEEK(44976) () 255THEN:$CDISK:GO TO 90

Now, it will work the way it should. This little peculiarity is due to the way DISKMON
interacts with the BASIC commands in the PET. As long as there is a colon in front of the Ffirst
DISKMON extended BASIC command in the conditional part of the IF statement, the command
"should execute properly.

PROGRAMMING HINTS

Error Trapping

There is a potential problem with a file open command if the file does not exist. In direct
mode (i.e., $LOAD,2,F$), a "'File not found'' error message will be displayed.

In program mode, however, DISKMON will set decimal location 44976 to 255. This
allows you to "'trap” the error.

To allow you to write your own routines, DISKMON will not go into its standard error
routine. DISKMON sets decimal location 44976 to a value of 255 which can be tested under
program control Using the “flag” properly requires an opening routine such as the one below:

50 POKE44976,0:30DISK,1,“R " F$

55 REM CLEAR ERROR FLAG, OPEN FILE,
60 IF PEEK(44976)=255 GO TO 1000

65 REM CHECK ERROR FLAG

1000 PRINT“NO SUCH FILE ON DRIVE',D
10710 INPUT"NEW FILE NAME',F$:GO TO 50

Recommendations

When in direct mode we recommend that the DISKMON user execute the §HALT com-
mand between progran LOADs. The $HALT command efficiently refreshesferases RAM and
reduces the possibility of value anomolies occuring.

As you insert a diskette, a microswitch will enable (you hear a click) the WRITE PRO-
TECT NOTCH on the diskette. This will occur during the last 3-5 millimeters of insertion. When
inserting a diskette (with the notch up) always carefully insert the diskette until you hear this
microswitch enable. At this point the diskette will be properly seated. If you have purchased a
set of diskettes with your system you will also receive “‘write protect™ tabs which fold over, and
protect, the notch. These tabs will prevent the microswitch from enabling which makes it impossible

to inadvertently write to a diskette. When attempting to write to a protected diskette, DISKMON
will respond with a DISK FULL ERROR

o

PRELIMINARY TROUBLESHOOTING
*ALWAYS CHECK YOUR INSTALLATION PROCEDURES

Directory Frame Without Contents:

If drive motor is not on check disk power on switch: a red LED power light should
activate on the front panel. Remove diskette and re-insert. |f problem continues, power
down system, power back up and try in this sequence: Use a new (or reusable) diskette,
FORMAT the diskette, and call for a Directory. DISKMON should display a directory
frame, and within one second display 39FREE TRACKS. If problem continues, power
down, check all components, and gently move the two daughter boards (DCC and DOS)
into different slots on the EXPANDAMEM. Try procedures again. |f problem persists
remove disk cover {remove the cover vertically) and check all ribbon cable/plug connec-
tors, If problem continues, contact your dealer.

Both Drives Run Simuitaneously:

Check the Disk Controlier Card ribbon cable to the drive unit. The cable should
have a half-twist from the DCC to the drive unit. Blue wire edge should be on top where
the cable plugs into the drive unit. |f problem persists, remove disk cover and check the
DIP switches on the left side of each individual drive. The left drive {No. 1) should have
the DIP switch No. 1 enabled. Drive No. 2 should have DIP switch No. 2 enabled.

Noisy Wobbly Diskette:

Remove diskette and check the center spindle hole. The diskette can ‘move’ a few
millimeters within the diskette jacket. | edge of spindle hold is damaged, this indicates
improper insertion. f problem continues check spindle inside drive,

String Value Anomolies:

To reduce the possibility of string value anomolies we suggest that you use the
$HALT between all LOADS while in direct mode. Where sharing variable values between
programs is not important insert the CLR command in the first line of all programs.

Disk Error Messages:
The DISKMON operating system uses one error message for all disk drive errors.
This message indicates a malfunction on the disk drive and may be interpreted as follows:

DISK ERROR E=ee, T=tt, S=ss
E=error number (as follows below), T=track number, and S=sector number.

ErrorNumbers: 00=verify error 2X=write-unrecoverable error 4X=write protected
8X=not ready X8=read-unrecoverable error X4=lost data
1X=disk has not been formatted

*X may be any hexidecimal digit

NOTE: These error numbers are the hexidecimal value of the status byte returned by
the Western Digital FD1791A Floppy Disk Controller.

7-3

Chapter 8 — DISKMON UTILITY PROGRAMS

The DISKMON operating system is supplied with two diskettes, One is a blank diskette,
and the other is a demonstration diskette on which reside a number of utility programs which
perform important and useful tasks for the user. Programs are located on both sides of the
demonstration diskette, These programs are:

MONITOR
DATAFILE
DISKTEST
DISKCOPY
RANDOM-FORMAT
PAGETEST
BLOCKTEST
DENSITYCOPY

MONITOR

Monitor is a program which allows the user to interact with the PET at the machine
language level. Monitor contains 2 memory dump routine, a 6502 disassembler, a memory move
routine, a program testing routine, and a tiny 6502 Assembler which uses the same mneumonics
as the larger PET-ASSEMBLER.

DATAFILE

Datafile is a utility for handling ASC data files only. Datafile allows the user to copy,
display, or print the contents of an ASC data file. Datafile should not be used with program files.
It is for data files only. In the copy mode, the Datafile program will prompt the user for the
FROM file and the TO file. If the TO file already exists, the FROM file will be appended to the
end of the TO file instead of copied over the TO file.

DISKTEST

The Disktest program allows the user to test any of the drives in his system. Drives are
tested one at a time. A blank diskette is required for testing. A test data file is written on the
diskette during testing.

DISKCOPY

The Diskcopy program allows the user to copy the entire contents of a diskette onto
another diskette. The Diskcopy program requires two drives and two diskettes. The program
allows the user to copy from drive one to drive two or from drive two to drive one. The Disk-
copy program automatically alters itself to reflect the amount of available memory present
in the PET.

RANDOM-FORMAT

The Random-format program allows the user to format an ASC data file for later random
access. Random access files must be specially formatted before using. The program allows the
user to specify the file name, the disk number, the number of records, and the record length. If a
file already exists by that name, the Random-format program will erase the old file, and place the
new random access file in its place.

8-1

BLOCKTEST & PAGETEST

Blocktest and Pagetest are memory test routines for the PET, These two routines are
designed to work with the PET which has a DISKMON operating system, Each test routine works
essentially the same, except one tests memory by 4096 byte blocks, and the other tests memory
by 256 byte pages.

DENSITYCOPY

The DENSITYCOPY program allows you to convert a single density DISKMON diskette
into dual density format. This is of value to those customers who purchased Compu/Think’s
original single density disk drives.

Chapter 9 — MISCELLANEA

Good software is an important component of any computer system. One of the reasons
why we value good software so highly is because it takes so much time and effort to produce a
really quality piece of software. In the past, we have not done enough to attract the kind of
talent which the microcomputer industry needs in order to provide good consumer software. In
fact, when talent has shown itself, we have quite often abused it by illegal copying and pilferage.

The DISKMON operating system contains an attempt te combine the forces of both the
hardware and software in order to provide a secure environment for consumer software. Two
services have been provided. First, locations $BFFO through $BFF5 contain six ASC digits which
provide a unique serial.number for each DISKMON system sold. Second, the DISKMON operating
system is constructed to lock out all user instructions from READY mode (except $HALT, $GO,
and RUN) when location 1034 is set to decimal 42.

DISKMON SPECIAL MEMORY LOCATIONS

START-END

0006
9000-A3FF
AAOO-AAFF
ABOO-AEES
AF00-AFOF
AF10-AF17
AFDO-AFD1
AFD2
AFD3
AFEO-AFEF
AFFO
AFF1-AFF8
AFF9

AFFA
AFFB
AFFC
AFFD
AFFE
AFFF
B0O00-BO41
BFFO-BFF5
8FFO0-8FF5

DESCRIPTION

SECURITY SWITCH ($64=SECURITY ON)

DISKMON TRACK 1/O BUFFER AREA (2560 BYTES)
DISKMON RECORD /O AREA FOR DATA FILES (DR$)
DISKMON DISK DIRECTORY AREA (1000 BYTES)
DISKMON HOLDING AREA FOR DF$ VARIABLE
DISKMON HOLDING AREA FOR DI§ VARIABLE
DISKMON BLOCK BYTE COUNTER

DISKMON 1/O SWITCH (1=READ, 2=WRITE)
DISKMON RECORD BYTE COUNT (DR$)

DISKMON CURRENTLY OPENED FILE NAME
DISKMON CURRENT RELATIVE TRACK NUMBER
DISKMON CURRENT FILE INDEX DATA

DISKMON DIRECTORY WRITE SWITCH ($10=WRITE)
COMMAND MODE SWITCH ($22=COMMAND MODE)
CURRENT DISK DEVICE # IN ASC ($31 or $32)
ABSOLUTE SECTOR NUMBER

CURRENT DISK COMMAND BYTE

REGISTER SAVE AREA

CURRENT ABSOLUTE DISK TRACK NUMBER
DISKMON ASSEMELER PROGRAMMER’S JUMP TABLE
DISKMON UNIQUE DEVICE IDENTIFIER (OLD PET)
DISKMON UNIQUE DEVICE IDENTIFIER (NEW PET)

9-2

ASSEMBLER PROGRAMMER'S JUMP TABLE
STARTING ADDRESS = B00O

BOOO
BOO3
BOO6
B0OO9
BOOC
BOOF
BO12
BO15

BO18
BO1B
BOI1E
BO21

B024
B0O27
BO2A
802D
BO30
B033
BO36
B039
B03C
BO3F

DISKMON INITIALIZATION ROUTINE

DISKMON RETURN ADDRESS FOR EXTENDED BASIC COMMANDS
DISKMON OPEN DISK DRIVE AND READ DIRECTORY RTN
DISKMON CLOSE DISK DRIVE AND WRITE DIRECTORY RTN
DISKMON CLEAR CURRENT FILE DATA AREA

DISKMON ALLOCATE FILE TRACK ROUTINE

DISKMON ALLOCATE FILE TRACK ROUTINE
DISKMON ERASE FILE ROUTINE

DISKMON WRITE DISK BUFFER ROUTINE

DISKMON READ DISK BUFFER ROUTINE

DISKMON WRITE TRACK FROM MEMORY ROUTINE
DISKMON READ TRACK INTO MEMORY ROUTINE
DISKMON TURN DISK MOTOR ON ROUTINE

DISKMON TURN DISK MOTOR OFF ROUTINE

DISKMON SAVE PROGRAM FILE ROUTINE

DISKMON PRINT LINE ON PRINTER ROUTINE

DISKMON LOAD PROGRAM FiLE ROUTINE

DISKMON READ FIRST TRACK OF PROGRAM FILE RTN
DISKMON READ NEXT TRACK OF PROGRAM FILE RTN
DISKMON ASC/HEX CONVERSION ROUTINE

DISKMON XEQ/XER LOAD AND GO ROUTINE

DISKMON SAVE RELOCATABLE PROGRAM ROUTINE

93

festespobste ok ek ek
RFINDCOM-FORMAT

sksdork skofeske g et ok

BASIC LISTING FPAGE &1

1638 EEM THIS PROGRAM FORMATS AWM ASC
116 REW DRTA FILE FOR RAMDOM ACCESS
126 REM ALL RECORDS IN A RANDOM
128 KEM ACCESS DRTA FILE MUST BE OF
1480 REM THE SAME LENGTH. THE FILE
158 REM INDEX MIST BE SET TO STORE
1568 REM THE NUMBER OF RECORDS RND
178 REM THE LENGTH OF ERCH RECORD
2608 REM FORMAT SCREEN AND INPUT
2108 FRINT"&£&RANDOM-FORMAT 8"

228 THPUT"ENTER FILE NRME “; DF$
238 INPUT"ENTER DRIVE # ":D

248 INFUT"NUMBER OF RECORDS "iRN
2t INFUT"RECDRD LENGTH ":RL

e PRINTYCREATING FILE®

2ra Rg=""

288 FORI=ATORL :R$=R$+" ":NEXTI

30 REM CREATE RANDOM ACCESS FILE
e A=RN:GOSUB486a

315 DIS=CHRECL I +CHRECHY

228 A=RL : GOSUE4EE

332G DIS=DIS+CHRECL D4+CHRECHI " "
3Z@0 FODISK, D, "W". DF &, D1

348 FORI=1TORM

I5E SUDISK. R

3650 NEKTI

e FCDISK

358 END

4608 REM CONYERT TO INTEGER BYTES
416 H=INT<R/256)

420 L=RA-(H*256

438 RETURN

10-1

Ak etk
FRGFTERT
seedesh ook e

RASTC LTSTING FRGE £

R OPRINT™®
16 PRINT" MEMORY TEST PROGRAM:FSEUDN RAMDOM DRTA"
26 REH BY RICHARD TOBEY COPYRIGHT €°16/1928

W PRINT® " FRINT®

S GUSHE FE
THRFHT"FRIOM FRGE" B TNPLUT" TN PARGE";: B
FrKE 475, @ POKE A7TR ACPOEE 1806, B+l
THRUT"# PASIES. B-255. B=UONT THUOUS : P
F=TNTCPI D TF PHESS GAOTO 1360

AR
10
1 5E
1«6
1560
h¥23:]
176
1 :121: ﬁ
1430

TF P28 THEN C=@-GNTO 178

FOR FURTHFR DESCEIPTION RLUN d@AA" -PRIMT"Y

C=4 - P=255RFM ND PRASSES=CIONT

THPUTYDEL JY SFTIMODSY;:
Hi= : R=F

FOKFE 181,10

SYMECRR2Y CREM STHRT FILL
IF D=0 (OT0 258

W=l REM DEL AY

FR ¥=1 T 998 NELT
W=hed D IF YR GOTO 236
=S CRAR Y - REM STERT TEST
TF PFREECAEFV 1= [ROTO <88l
FRIWNT""

‘EFM FRROR TEST

Vi FRINT'FRROR TH BLOCK": INTCPEEK (AR A160+1

nd ‘:‘l]
¢
hx)

e

FRINT"C PAGE": PEFKCLRT);
FRINT"® -FRINT"TEST DRTH
FRINTHEST LQCATION 2"

GET 0 JFCE="" GOTO 2A6

N, YRT L TNE": FEEK 185

" PEEK O AN Y, "MEMORY " PEERCISG (FRIMT

TF CF="4%" THEN SYSO9agy GNTO 76l

FRTNT"" - PRINT"RETEST?"
GET C#:IF Cg="" GOTQ <=6
TF Cg="%" RZOTQ 196

FNE

=il FRINTYFRSSY: € "TIME 5 TS

F=R—1:1F RI»E GOTD 498

IF C=1 GOTO 48@:REM CONT FLAG SET
FRIMTETEST COMFLETE" :GOTD Z2E

F=255 G070 1528

REM SUBROLITIME T0 LOAD MACHINE CODE
REM THMTO THE SECOND CRASSETTE BUFFER
Fll T=87%7 TO 242 READ W POKE J.W:NEXT

A RETLIRN

DATR 166, B, 320182, 3, 2. 141, 2
CRTA 145 182, 22, 148, X, 208, 246, 36
DRTAH 166, B, 32,162, 3, 32, 114 R

1 DATR 209, 182, 208, 7 T2, 118, 3, 268

DATA 244, 1A% 8, A3Z, 187, 96, 165, 178

A DATA ARE 482, 165, 179, A3E, 183, 36, 165
1 DRTR 48R, 83 183, 89, 181, 96, 23268, 187

DATA ZRE. A, 23R &9, 165, €3, 197, &6
DATH 9B, T3 71, 477 68, 133, 72, 163

10-2

JEdtsk ok
PRGETEST
Aotk seshob sk

BRSTC LLISTING FRGE &=

838 DATA 255, 133, 7X. 96, 166, 6, 76, 92, 3

L8R PRINT"" FRINT"THIS ROUTINE FILLS THE MEMORY WITH H
16383 FRINT“DIFFERENT PSEUDD RANDOM FATTERM

1618 PRINT"EACH FPRSS. THEN AFTER A DELAY FERIOD,
182t PRINT"GEMERRYES THE PATTERN AGAIN AND

B PRINT"COMPARES IT TO THE CONTENTS OF MEMORY.
1348 FRINT"THUIS CHECKING FOR POSSIELE FRILURE
16958 PRINTMODES, INCLUDING ERD CHIPS, STUCK

1868 PRINT"ADDRESSES, INADEGURTE REFRESH ETC.

1978 PRINT" :FRINT" TO RUN THE PROGRAM

1388 FRINT"BLOCKS RRE 4K BYTES. TO TEST THE 2RD
1498 PRINT"THRU 6TH BLOCKS OF MEMORY (16K RADDED)
1188 PRINT"USING SELECTS 2 THRU 5, CDEC 8192-245763
1118 PRINT"FROM BLOCK IS 2 WHILE TO BLOCK IS 6.
11z@ PRINT“THE # OF PASSES MAY BE FROM 1 TO 255
1128 PRINT"ENTERING @ PARSSES GIVES CONTINUOUS

1148 PRINT“TESTING

1158 FRINT"ALSO DELAY MAY BE ENTERED IN SECONDS
1166 FRINT"@=HN0 DELRAY

10-3

hid ok e o
MU TR
Aok sk

FWRSTE) TSTTHG FAGE @l

vt REM O TMITIA T
PRt IFL RO RTHEN P2 56
THRE P, 38 POEESL. 48 POKEDS, 43 MOE="T8aR"
Pl PRINTY TRITTAL TZTNG" (DEF FHRICA2 =9 THTE CH-48 3 A48 2 +F— THT CAALE vl &
130 Pa="ANIINGRSE) B LRESR0AF IR BEYT BREAY - GRSLIETAE
LET PE="AIPARDSEETRE 2 ARACOSAIZ0RRARSDIAN TSRS R AN ZEARRRAREA " BNSLIET @6
146t D= HEEC 390
Tl TEM DFECLS
VAR GOSHRE: 38
s 0T U e
S RFF COMNYERT QOCTHE HWUMBER
A A= M =L FNORED
92 FORIK=XKTI1STEF-1
9 A=A+ VAL CRTDECRE, TR Ll mk~TR 300
a4l NEXTTE - RETLIRN
G5 B=6 MA=F FOR TE=S TS TER =1,
HEE R=F+C INT USRS CET TR 2 3 10T 3
TR MR- CTHTORRA TS ™ TE 2 2 87 T D
M NE=TTE RETLRMN
1500 REWM TIHY FET-RSSEMBLER
LS PRINT"E&TINY FET-HSSEMBLERSLY
L5405 TRPOTYLOAD ARGRE": A% GOSURSESS - |LA=A
1518 FORY =4 TO2A
FRINT"FLANE SINTES BEFORE EACH TMPUT LIME"
P FRINT"PLACE DLINTESR BEFORE EACH INPUT LINE"
3 MNERTY
R DR=LR
1 FRIMNTYLORD ORG P OPERANDS SSEM QUTRYT®
? FORME=1TO2R
T=LA GOSLBSE4R PRINTY v;
T=0R " GNSUBRE4E
IHPLITSE S&=SE+BRE
TR EFT#0S%, Ra="END" THEML 559
GOsUEEL @0
TFERECV" "THENPRINT"*; TRECZT: ER$ EOTOLS20
PRIMT"Y; TABCZF2: LEFT£(FPS$+BRE, 12
Szl GOSURT 28R
L=t EHIFE 2
i DIR=UR+L) Bt A+
YA HERTRK
99 GRTOSE2R
FEM IMTTIALIZE ALL YARIARRLES
25 MTE="ALCANDASLEITEMPCPHCFYDECEOR INCISRL DAL DRLDY Y
B MT$=MT$+" L SRORAROL. RORSECSTRSTHRS T IME D
* MTE=MT$+ "BLCBLSEBEAMEMIENERPLBVEEYSERECL COLDCL TCH YDEXDEY TR THYNOPFRAFHPPLA®
MY =M TE+ " PLPRTIRETSSECSEDSE T TRETRAY TYARATSETRAT IRGESTRYTANRTSTEND Y
JTEF=" 1111482020091 8811 110414412220 222233 % SE AN TRIHIIASREET"
OFE="S 21 BRZACAEACACZILEZSBRLRZABE 2R EJFtﬁiﬁ#&ﬂ4u4uBﬁFﬁ7ﬁUw1nﬂarﬁﬂaiH"
VP E=OF$+ " DRSARECALEERCSEA4 SRS 2R S4RSR T EF R T EARRSOSRASA IRANAEHEE1 AR Y
A AME="FEFF A0 4FELR) & A0FE SC1BFESE SEIDFESDIDFEFEALACA A"

ZE YARTHABLES

10-4

! dekeeokeoks
S MR TOR
Reob ok

BARSTO LISTING FARGE &

EE HE="B1 23456 TESABCDEF Y

258 BRE=" "
i Cog=""
S8 RETURN
SRR REM CORVERT DECIMAL T HEX STRIMG
Je=Z Ag=1n
FORIS=ATOIS K8=J8~18 E=16"KE
As=HE+MTIDECHS, INTCRAE I +1. 4.0
A=A~ INT ¢ RAE 2 #E
NEXTIS: RETLURN
Jé=d As="" GOTOZS26
28EE REM COMVERT HEX STRINGS TO DECIMAL
2918 AE=RIGHTS "BEAR"+RS, 40 A=
292 FORIS=1TO4 B=A+18" ¢ IS4) #FNR{ASCCMIDECAS, SeT8, 1020 NERTIS: EETURH
oM hEﬁ FARSE ADDRESS DFERANDS

O=FES 4 CMIDECTITS, M, AD="E" 00

c—l O=5: IFMIDS LS, 4, 2r="A “THEMOP=OFANDZS) : GOTOZR22

=2 C=2 O=ARSCa#cMIDECITS, Ny 12="1"22 IFMIDECL %, 1, 1 0="#"THENZE2S
S=2: [FMID$CLS. 1, 17 ¢ $" THENIBSE
C=d 0= IFMIDECLS. 3, L0=" "THENZ&S&
=5 0=20 IFMTIDSCLE. 4. 22=", Y THENZHIG

IFMIDS LS., 4, 23=", K" THENIRIS
C=46: O=RESC LR CMIDSCITE Na A 3<% 0 IFMIDSCLE. 6. 10=" “"THEN3R34
Al C=320=R8: IFMID$(L$,H, 2y=", A THENIADY
AGS =64 O=2a+X0: IFMIDSCLE, G, =", ¥ "THENZRSS
LT huTﬂSBSB
IEE S=%: IFMIDSFCLE, 4, 20<3" (" THENZAIA
IS5 c c0=d44: IFMIDELE, 5. 1 o=" 1 "ANDOP=64 THENZASE
IHED C=ipB:0=8: IFMIDECLE, 5. 30=", X7 "THENZO9S
IBES Q=46 IFMIDSCLE, S, Zo="7, Y"THENZBIR
e GOTOZERSEA
5 @F=MIDECANE, Na2-1, 2 GOSURZ98A : ER=1
t6 TFAPRNRCTHENER=@

7 A=ORORD : GOSLUEZS8A RETURN
3@ F$="" ERE="0UPERAND ERR" :RETURHN

» GOSLUEZEES: IFERTHENZGAYR
AT PE=fA% RETURN
3094 GOSUEZRES : IFERTHENZASEA
095 FPE=AE+MIDSLE, S+2, 2o+MIDECLE. S, 20 RETURN
IBNE GOSUBZHOSS: TFERTHENIGDR
IAG9 PS=R$+MIDSCLE, S, 2 :RETURN
0@ REM ONE PRSS TINY ASSEMBLER
LS FE=""ERS="Y HN=R
M=h+1, : IFNEZTHENT 145

IFMIDECSS, 1. TX<COMTDECMTH, NeZ—~2, IHTHENZLZA
A$=MTDECOPE, Na2-1, 27 GOSURZAE : OP=H : 0=A
ONVEL SHMIDSCITS. N. 43 GOSUBZASS, D168, TLER. 3145, 3145, 3175, 3140, 3155, 3155

17 RETURN
4% PE="":FR$="QFCONE ERROR"
TAER RETURN

Y
()]
l'.fl)‘}

B oS
™
|

10-5

Frlee koot sk

MO TOR
L e ST
BRSO LTSTIHG PRGE @z

1G5 | #=MIDECSE, S, 87 GOTOIAGEGE

FLEH A=0F GOSHBZEEAN : PE=A% GOSUBTEAG PP E+AS$ RETLIRN \
Tl A=0P: GINSUBZERA F4=R4$ - RETLIRN :
FS TFOP=ATHENGISURI, AR PE=E4 RE TURN \\
IATE TFOF=1THEMNZ145

TR IFOP=2THENGOSUBZ4GE : P$=B3$ RETLIRN

IZBER REM COMPRESS OPERAMND

32 BE="" FORI=STOAZ

@ IFRIDECSE. T 103" "THENBS=EE+MIDECSE, J, 10

330 HEXETI RFTURN

I46R REM CONVERT THET OPERAND

2418 BE="Y FORI=SSTONZ

A YRFMIDECSS, J, Lo="""THENZ4EH

3430 A=FRSCCMIDECSF, T, 100

A GOSLIEZSER BE=BS+RE

3I4TH NENTT

3468 RETLIRN

SR REM MOYE DATA ROUTINE

SEAE PRINT"&&HMOVE DATRLSEY

S5 INFUTYSTART ADDRESS": A% GNSUBGESS : LS=R

SRZE INPLUTTEND ARDRESS": A% : GOSURESSS LE=A

SHRAS INPUT"TO RDDRESSY: A GO IBESSSS L. T=R

Rz FORI=L.STOLESTERZSS

SERE pMC=SNS e
S6ET TF{LE-~T2=ATHENSE&ESS

Sl IFQLE-T 3255 THENM =L F-1

GEdS MF=T MT=LT+(I~L S0

SRHE POKEALS1. MC

SEEA POKELE2. ME~INT (MF /256 04256 - FOKEAL SR, INT(MF 2560

SAETE FOKEALSS. MT-INTOMT /258 3425 FOKELRS, INTCMTA256)

S&za SYSOoLSy

SEES MNEXTI

SESE GNTOSERE

6268 REM IRITIALIZE IHMFORTAMT VARIARBLES

82EAd KE="@1ZTASNETESARCDEFY

6280 Ll F="2223223332112"

B21A 0FCB1="BRK: ORABERR: ERR;: ERR; DRALASLAERR: PHF: ORAZASL. - ERR; ERF: ORRZASLIERR: "
E215 0% (1 v="BFLIORASERR;: ERR: ERF; DRASASL SERR: CLL.GC: ORAGERR: ERR: ERR: ORARVASLTERR;
Bzl DFEC2H="JSRIANDOERRE: ERR: BITAANDAROLAERR;: PLF ANDZROL. ' ERR; BITEANDIROLZERR; ¢
RS O$CZ1="EBMI{ANDIERR; ER®; ERR: ANDSROLSERR: SEC; ANDEERR; ERR: ERR: ANDFROLFERR: ¥
6230 NFCAI="RTI: EORGERR; ERR; ERR;: EORALSRAERR: PHR: EORZL.SR (ERR: TMFZEORILSRIERR; "
BHES 0$(Sr="BWC~EOR4ERR;: ERR; ERR; EDRSL.SRSERR; CL.1; ENREGERR: FRF;: ERR; EORTLSRTERR: ©
€248 OFCEr="RTS: ARCBERR; ERR: ERR: ADCARORAERR: PLA; ADCZROR : ERR: JMPRADCIRORZERR: "
6245 DF(FHr="RAVSADCIERR; ERR: ERR; ADNSRORSERR: SET: ADCEFRER: ERR: ERR; ADCTRORTERR;
£250 OECRI="ERR; STROERE: ERR; STYLSTRISTHLERR: DEY: ERRE; TXA: ERR;: STYRSTAZSTHIERR: ¢
6700 OF(D="BCC{STRYERR: ERR: STYSSTASSTRIERR: TYA: STRATAHS: ERR: ERR: STRVERR: ERRG "
S26E 08 C1AY="LINVELDRELDRZERR: LDYILDAALDXLERR;: TAY; LDRZTHEX: ERR: LDYZLDAZILDYIERR: ¥
BEES OF0110="BCS<LDA4ERF; ERR LDYSLDRSL.DRIERR: CLV: LDASTSH: ERR: LDYFLDRFLDHEERR;
€270 (FC12H)="CPYICMPOERR: ERR: CPYICMPADECALERR: INY: CHP2DEX;: ERR: CFYICMPIDECZERR: " 2
ERF5 DECLZI="ENE<CMPAERR: ERR; ERR: CMFSDECSERR; CLD: CMPEERR: ERR; ERR;: CHRVDECTERR:

10-6

——
MONTITOR
ookt

BARSTE LISTING FARGE @4

SRR O$014r="CPRZSBCEERR; ERR; CPHASECA INCAERR: IMX: SBOENOP; ERR: CPRISBUITNCRERR
E2ES ($(45)="BER<SECIERR: ERR; ERR: SECSINCSERR;: SED; SRCSERR: ERFG ERR; SROTINCPERR
fEFA REM PRINT MAIN OQPTION SCREEN
2 PRINT"&&MONITORES"
I FRINTTRBCSY: "COPYRIGHT 1979 BY COMPUSTHIHK®
FRINT :FRINT :PRINT : PRINT"FREE MEMORY STARTS AT 5 "' MOS FRINT
05 FRINT®M MOVE DRTR IN HEMORY®
7 PRINTYE EMECUTE PGM IN MEMORY"
FRINT'D DUMF MEMORY"
FRINTUL UNASSEMELE PGM IN MEMORY"
FRINT'C ADD TWO HUMBERS®
FRINT"N CONVERT HUMEER"
% PRINT"A TINY PET-ASSEMBLER"
FRINT :FRINTUANY OTHER KEY RETURNS HERE"
PRINT"HEXADECIMAL HUMBERS MUST BEGIN"
FRINT'WITH R $ SYMBOL $A254 DECIMAL
FRINT'NUMBERS USE DIGITS OWLY S4z *
2 PRIMTOCTRAL. MUMBERS BEGIN WITH AN O °
GETRS : IFA$=""THENEZZ0
IFA$="M" THENSEAE
IFA$="E" THENG4BG
IFR$="D" THEN7G@0
IFA$="U" THENESA®
IFR$="1_"THEN7 286
IFR$="A" THENASGE
IFR$="C"THENSRGA
IFRA$="N"THENS1 08
GOTOE3E0
REM EXECUTE ROUTINE IN MEMORY
PRINT"&SEXECUTE ROLTINE&E"
THRUT "AGDR " S : GOSUBSESS
6405 FRIMT
64816 POKEIRL, INT(AAZSED
B4R FOKEIAE, A-INT (AA/ZSE0 42
&41.8 INFUT'AC ": A$:GOSURGES
Beb 2 FOKESAZ. A
A41.4 INPUTURR *; As$: GOSLBEESS
6416 FOKESLE. A
€418 INPUT'YR “: A% : GOSLBEESS
6428 FOKES1S. A
BIES SYSCRIED
6478 PRINT:PRINT"RESULTSY
€452 PRINT
6454 F=FEEK{912)
E4%6 FRINTUAC " R TABCAS)Y; "$"; (B=R:GOSUBSESS FRINT
64738 H=PEEKCS13)
6440 PRINT"XR ":P: TRBCLS): "$Y | B=A:GOSUREESS : PRINT
- 6442 R=PEEK(9147 4
Gddd PRIMT'YR *; f; TRECLS); "$" @ B=A: GOSURSESS PRINT
6499 GOTOEZZA

=1
5

10-7

Frob:kopopor
HOMITOR
Frotokiskokobst

BRASIC LISTING FRGE @5

£588
&5,
[As{e]
G5EAR
65617
SERR
&OFS
A551.8
(3= =
30 I
6518
&SRR
a2
6225
6RER
605
&4l
6545
EIRGH
6550
&E52
6553
6554
ket
£558
el
&S558
£57R
65S7
3y
£559
BE@AR
(k]
sil i
6515
620
B0
GERER
6639
R4
66 S
HER5R
6655
(]
&6E0
GRve
6575
BEEA
[t
(=%

REM LINASSEMBLE MEMORY ROLITINE

PRINT " &&LIMASSEMBLE ROLITINE&E" -
FRINT \
TNPLUT"ARDRY ; A% : GOSLIBSESS

S=H

FRTNT"“; : INPUT" TNSTRUCTIONS" : A$

GRELIREEIS ; MY =R

FRINTYHESRGECTHAL. ASSEMELER DECTMAL" :PRINT

TFNI »2ATHENNL=7R

FORT=2TONA.

E=INTCS/256) : GOSURESSS

E=S—~INT(S/256 14256 : BGOSURSESS

FRINTTARCZ9); RIGHTS (" PHETRECED, S PRINTY Y TARCAY;

PRINTY *;

J=PEEKCS) K= INT (I 160 L=J-Ka1641,

M=ASCCMIDSCNECK), Lad, 12 3—RSCC AN 244,

N=VALCMIDSCLL £, M, 103 : FORP=1TON

E=FEEK (S+P—1) : GOSLIBSSSS

MEXTF

FRINTTHECZAY: : FORF=1TON

R=FEEK {S+F=1)

FRINTRIGHTSC AR +RIGHTS(STRECR Y, LENCSTRECEY 3—4.0, X33

NEXTP w
FRINT FRINT"";

FRINTTAEBCAZY: MIDSCOSK D, Lad=3, Ta; " »;

B=FEEKLS+1)

CNMGDELBREVS, GESS, SERA. 6650, 6635, G630, GE5H, AEAS, 6518, 6615, 6620, 8625, 5636
FRINT

S=S+N

NETI

GOTOSZ26

REM MISC. ROUTINES FOR UMASSEMEBLE

GOSLIBSEER FRINT", X" :RETURN

FRIMT" (" GOSUBEEER FRINTY »"; RETURN

GOSURSESS : FRINT®, W' :RETURN

FRINTYRY; :RETURN

RETURN

IFBX1E7THENR=Y (HOTEANDZSS) +1 : B=~E

T=5+5+R ,

B=INTCTA256) : GOSUBSESS

B=T—INTLT/256 %256 GOSURGSSS - RETURN

GOSUBEEAER FRINT", ¥*; :RETURN

FRINTHIDEORE, INTCRA1LEY 44, 105 MIDECKE, B~INTCRBALER16+1, 47 - RETURN

FB=FEEK L S+2) GOSURSBSS)

B=FEEKCS+1) GDSUBGSSS

RETLIEN

FRIMT" (" (GOSURGSSS PRINT", K" :RETURN

FRIMTY#";: : GOSHBSESS - RETURN)
FRINT" O GOSLIBEESS PRINT"), ¥ :RETURN

GOSUREESS PRINT Y, X" :RETURN

10-8

BRST LISTING PAGE 86

65595 IF"$"=LEFT#<A$, LI THENGGSE
Be3fe IF"O"=LEFT$C(A%, 1) THENSDS
6657 F=YAL (A$) GOTOREDS
6588 k=1 GOSURESAE
B89 RETURM
62EE REM FIX BASIC BUG
€205 REM FIR BRSIC BUG
6318 REM FIX RASIC BUG
6315 REM FIX BRASIC BUG
632A REM FIX BRSIC BLIG
6325 REM FIxX BRASIC BLG
BREA REM FIX BRSIC BLG
63l REM COMVERT HEX NUMEBER TOQ DECIMAL
99N AF=RIGHTS " E0OEE"+A%, 4 : A=Q
A31LA FORJA=KTO4
6315 CH=MIDSIRE, T1. 15 :C=56
£928 IFCHE:="R"ANDCEI="F "THENC=RSCICF I —ASCOY A" 2 +16
€325 IFCE>="GA"ANDCS="3" THENC=RSCICEI-ASC A" s
6338 A=AFLE+HT
EHES NEXTJIL
8353 RETURN
7608 REM DUMP HMEMORY ROUTINE
W 7BAS PRINT"&LEMEMORY DUMF&EY
e FRINT Ksi
7ELS INPUT"ADDR'; A% GOSUBRE&SS 1 5=A
TEZa PRIMT™': INFUT"# OF LIMES"; R$
7827 GOSURGEIS 1 N=R: IFN>2ATHENN=Z26
7E2S PRIMT"SADERS &22&DECTIMAL&&ES S&EHEXAZES “CHARY (FRINT
TEZE FORL=1TON
YEEZ PRINTTRE(Y
PE35 FORT=4TOS: GOSUBTO9S
7R46 FPRINTRIGHT#{"808"+RIGHT$(STR$CEY, LENCSTRECBI 310, X0 (NEXTI
73 PRINTTRB(ZZ); (K=2
THSG FORIT=1T0S5:GOSUBTR3S5
FESS GOSLURGASS (NEXTI
TEEE PRINTTABC(Rd
FRE2 FORI=1T0S:GDSURTEASS GOSUBT4RG
THES PRINTARE:
TEFE NEXTI
PE7Z PRINTPRINT" Y :T=S+0l ~1 345
7EVS GOSUBGREAR PRINT !IM
7E9E NEXTL :GOTOYHIS
7695 B=PEEK(S+I+{L-12%5-1 3 :RETURN
FA99 GOTOEIZG
7ige REM LOAD PROGRAM INTO MEMORY
7118 A$=LEFT$(P$, 45
Fiae k=1 60566980 : S=R
7458 FORI=STOLENCPEISTERZ
7148 RE=MTDL&{PE+2E", T, 22
TARE GOSLessen

10-9

dotob st
MONITOR
stk obooki ok

BASTC L ISTING PRGE @v

TER
Tira
filga
Fasa
PRl
7R
Fac R
73R
7R
A
- Y=
T
7dda
e ity
TR
73 G
TS
TEEQ
7 R46

FOKES+TINTLI 23-2. A

NEXTI

FOKEAL: S~TNT (5256 1 :2S6

POKEZ: INTCSA258)

RETLIRN

FEEM DRTR FOR STORED PROGRAM
L.8=k5

RETURN

FEM COMVERT HEX TO PET-RASIII
IFRB<ZZ2THENR=Z?
IFCESRSIANDIBCL 680 THENE=Z2
ITFRH22ETHENE=3Z

AF=CHRESCR

FRETURN

FEM RESOLVE RELATIVE ADDRESS

AF=MIDESE S 5) GOSUBEEIS
=F—C CIR+2

IFR<ETHENR=256+R
GOSLIB2206 : RETLIRN

REM POKE MEMORY

A FORT=1TOLENCF$3STEFS

AS=MTDEFE+"A", J. 29
GOSLIBESEE

A POKES+INTCIAZY, A

S5 NEXTI:RETURN
A3 REM CONVERT AND ADD HEX NUMBERS

24
SESEH
216a
8185
gi18
3115
2.0
814/
2145
2154
B L

FRINT"£&ADD HLUMBERSS&Y

M OPRTHT : K=1,

THPLIT"# ONE"; % GOSLIBEESS : S=A
PRINT :K=1
TNFLIT"# TUO"; A% GOSUREEIS | SZ=R

A PRINT (k=1

=54+52

GOTORL2E
REM COMNVERT HNLIMEER
FRINT"&LCOMNYERT NUMBERLY
FRINMT

THFUT"NUMBER “: A% : GOSURGSIS
FRINT PRINTYDECTMAL = "R
FRINT

GOSIESSR PRINT"OCTAL. = "B
FRIMT PRINT"HEXANDECIMAL, = “;
H=TNT (RAZTRD (L =A- (M58)
H=H: GOSURAERSS

B=l GOSUBRGESS

GOTOEZZA

10-10

106
185
i1a
1a@
1368
1@
1536
158
1iv7a
26
24.8
258
236
246
256
260
2V
258
TR
KuR
220
336
, 4@
= 556
e
376
330
EIgT7]
414
4.8
478
4
456
456
478
4120
4¢3

Aok tctokokoh
DISKTEST
K dobp ek ek

BRSIC LISTING FRGE &1

REM DISPLRY HEADER ON SCREEM
FRINT"&&ADISKTESTRE"

FRINT"THIS TEST WILL WRITE DATA ON THE®
FPRINT"DISKETTE DURING TESTING! "
FRINT"FORMAT THE DISKETTE BEFORE USINGH
TNFUT"EMTER DISK #";D

FRINT"FORMAT TEST FILE"

ZE="" FORJ=1TOA9S : 28=2%+" X" : NEXTJ

DEF FHNACI3=CTI-INT{TIA992%5%) /106

REM FORMAT LARGE RAMDOM ACCESS FILE
DI$=CHRF (2403 +CHRS (LI +CHRE (2O +CHRECB D+
FOOISK, D, "W, "DISKTEST. DAT". D1I$
FORI=4T496

RE=ZE+RIGHTSCY "+STRE$CI Y, 50

WD ISK, R

NERTI

FCOHISK

FRIMT"READLING TEST FILE"

REM READ LARGE SERUENTIAL. FILE

#ODISK, D, "R, "DISKTEST. DAT". DI$
FORI=1TO496

FRDISK: R$

KE=2$+RIGHTSH " Y+STRECI 2, 50
IFX$<>RETHENPRINT"ERROR AT RECORD": I:&TOF
MERTI

$CDISK

FRINT"RANDOM READING"

REM READ LARGE RARDDM FILE

FODISK, D, "D, "DISKTEST. DAT", DI$
FORI=4T04.28

N=INTIFNACT 344362 +1

FRDISK: N, R#

KE=TE+RIGHTS (Y "+ESTRECND. 5O
IFR$<>RETHENPRINT "ERROR AT RECORD"; N:STOP
HEXTI

FCDISK

FRINTYTEST SUCCESSFUL”

10-11

ek ke sk ook
DISKCOPY
Fevlk itk e

BASTC LISTING FARGE &l

186
J.ed,
LS
1
1634
JEAS
6
167
116
117
114
11&
118
1280
f Pty
14
12¢
1735
17568
1 <4
14z
145
144&
15A
1855
156
15
17VH
1FG
186
2860
2116
28
225
7IE0
24
235
256
255
TEAR
e
i i
P
St
TRR
IS
LT
5
K eits]
55

RFHM CLEARR AND SIZE THE MEMORY BY EXECUTING $HALT
REM BEFORE LOADING AND USING THIS FROGRRAR

RE# THIS PROGRAM IS SET UFP FOR TWD BRIVES

REM LHSER MORIFICATIONS MAY BE NEEDED

H=PEFK (S

FOKESR. 18

POKESY, 16

POEF49, 16

TFA>1 4 EGOTOL R

TF=>2eE0T0L2 7

IF#E»ERGOTINL2YG

TFR>SaGOTO1 28

PEINT"[sISECORY HEET= MORE MEMORYCGR £HRLT AND RELDALD ™ EHD
TC=d: FF=115 GOTOH RS

TE=%:FPFE=9a: GOTOLES

TC=1 FE=56 GOTOLRS

TC=1:PE=5&: GOTON 325

DC=414+40%98 REM COMMAND TRELE

D=438537 REM ASC DEYICE #

DT=45@55 REM ABRSOLLITE TRACK #

DM=DC+56 REM TURK DISK MOTOR ON

DO=DC+39 REM TURM DRISKE MOTOR OFF

DF=49147 :RFM DEYICE SELECT REGISTER A"
DE="4" REW DISK DEVWICE YRARIRELE

T=6:REM HESOLUTE TRACK VWARIABLE

DE=154256 REM STRRT OF HOLDING ARER
DL=SAPARCTCOHL Y (REM LEMGTH OF HOLDITNG RREA
DE=FE+25¢ REM EMD OF HOLDING ARER

RBS=251 RFM START RUFFER POINTER

RE=2611. . FEM END BUFFER FOINTER

REM PRINT OUT INSTRUCTIONS
FRINT"&&DISKOOPY &&"

FRIMNT"M EAR THE MEMORY BY EXECUTING $HALT ¢
FRINT'BEFORE LOARDING AND USTING THTS PROGRAMY
PRINT"THIS FROGRAM IS SET UF FOR TWO DRIVES"
INFUT"ENTER FROM DEVICE #Y: RDE . FPRINT™"
TNFUTYEHTER COPY GEWICE #"; ChE PRINTH"
FRIMTYFRESS AMY KEY UWHEN REEADYY

GETAE : IFA$=""THENZES

FEM DISKE COPY ROUTINE

FORTT=0TOXSSTERTO+

DE=RDS - GOSLIR3QA : GRSLUBESHA

FORT=TTTOTT+TC

FRINT"EFADING TRACK #'; T:""

OISR SRR

MELTT : GUELIR256

EOSLIBSE

[E=C0E GOSUBRSEHH : GOSLIBEAA :
FORT=TTTOTT+TC

FRINTCOPYING TRACK #":T: "¢

10-12

o sk ok
ISKCOPY
Asheesdeotobokok

BARSIC LISTING PAGE B2

5@
¥
EYa
3ea
538
558
5.6
520
S|
(3515
yR7]
626
|
TR
718
T8
s &
B0
b RRY
a2
358
930
RG]
3@
E6
950
b=l)
ave
9@

GOSUBTER
MEXTT : GOSUE3S5E

MEXTTT

GLOSURSEE8

GOTO283

REM TIMING LQOF

¥=T1

TFLTI=-X)<4aTHENS2E
FETURN

REM SET BUFFER POINTERS
FOKERS: @ POKERS+H]. 16
FOKEEE. & : POKERE+1, FE
RETURN

REM WRITE ABSOLUTE TRACK
FOKEDT. T

SYSCDO+3Ea)

RETURN

REFM REAL ABSOLUTE TRACK
FOKEDT, T

SYSCDC+33)

RETURM

REM OFEN DISK

POKEDD, ASCCDS

EYSCOMD

RETLIRN

REM CLDSE DISK

POKEDD, RSCIDES

SYSCDOD

RETURN

10-13

seednk ook shost ek
DENSITYCOPY
skbegestestokookokokok

BRSIC LISTING

163

15

2K

2.

by

2%

2ch

2%

27

283

I

16e
1832
AEE
ila
112
114
115
120
P
1736
18
14@
148
1%
155
156
165
17a
173
18
1839
236
2642
2818
el
215
2

=]

250
P
a6
245
250
288
2519
TG
2
K15 5
3\a

PAGE @1

REM DEMSITYCOPY PROGRAM

REM COPYRIGHT 19v9. COMPUATHINK

REM THITIALIZE WARIABLES 108
REW MATHLIME ROUTINE 286
REM FPARSE SINGLE DENS DIRECTRY 6@
REM DISFPLARY SCREEM INFQ 46a
REM LOCATE NEXT TRACK Sar
REM WRITE DUAL. DEMSITY TRACK &0
REM INITIARLIZE EOR TRACK RTN =508
REM READ SIHGILE DEMS TRACK D6

GOTOZEG

FEM IMITIALIZE VWARIRBLES

GOSN B2
MRE=42147
Ma=45ag%

Sb=a8251

BF=316864
TP=45a24
DY=45651
UP=45062
ClL=45865

WT=4588a
MF=45a935

‘REM
:REWM
MBR=4568%:
RE=46995
TK=45655 :
REM
ER=002041.
REM
‘REM
:REM
REM
TREM
AL=45874 ;
‘REM
‘REM

REM
REM
REM

REM

REM

MOTOR ONM REGISTER
READ TRACK INTO MEMRY
REAL TRACK INTO BUFE
RESTORE HEADS COMND
HBS TRACK #

BUFFER STRRT FTR
BUFFER END PTR

TRACK RUFFER

FILE NRME

DEVICE NUMBER n
OFEH DISK RTH

CLOSE DISK RTN
ALLOCATE TRACK

WRITE DISK BLUFFER
TURN MOTOR OFF

DIMHNF$C29, RTCR9Y, 1D$CE9)

BN$= u
BDg="
RETURN

FEM MATNL.INE ROUTINE

GOSLIELB@
GOSLB460

F=fi: B=R: GOSURSaR

GOSLIBEZH®R

FORI=4TO3"
IFRTET b= THENZZS

NEXTI : GOTORSS

HFE=NFE T RT=1 ID$=ID$C1 2 - RTII =255 B=0: A=] : GNSLIRIAE : HT=1
GOSLBESEa : IFA=255THENGISURERSE : GOTOZ2D

B=l - GOSLESEA GOSUBEOR

DT=DT+1 {GOSURSERE : IFA=ZSSTHENZZ@

B=G GOSURSEAR : GOTOZ46

FHD

EEWM PARSE SIMNGLE DENSITY DIRECTRY

FRINT"PARSING DIRECTORY "

SYS(ER4)

FORI=BF+Z25TOBF+37SSTEFZS : NN+l

10-14

7
/

U ok ekl

DENSITYLCORY

B

BRSIC LISTING FRGE @2

3@ FORI=ATOLS : NFSCN)=NF$(N)+CHR$CPEEK (IT+J)) :NEXTJ
TEA RTCNI=FPEEKC T+I)
348 FORJ=17TO24: IDSCNI=TD$CHI+CHRECPEERCI+T)) (NEKTT
=0 NERTI
3658 RETLRN
46 REM DISPLAY SCREEN INFORMATION
418 PRINT"&ADENSITYCOPYEL"
415 PRINT"PLACE SINGLE DEWSITY DISK IN DRIVE #1"
478 PRIMTYFLACE DUAL DENSITY DISK IN DRIVE #2"
475 PRINT'HIT ANy KEY TO COPY®
436 GETA$: IFA$=""THEN4Z0
425 RETURN
SE@ REM LOCATE NEXT TRACK
561, FRINTLOCATING NEXT TRACK "
565 RT=RT+1
A FORIL=1TOX9
515 IFNF$<ONFS$CIL) THENSZG
So@ TFRTCPRTEIL Y THENSZ@
525 R=IL : ID$=I1D$CIL) (RTCIL Y=255 RETURN
SE8 MEXTIL.
535 F=255
546 RETURM
v 608 REM WRITE DUAL DEMSITY TRACK
BEL SYSCMF D
GEX FRINTUWRITING TRACK ON DRIVE #2 n
654 FORK=1TOSH NEXTHE
SRS SYSOER4)
616 FOKEDY, 58: SYSCOR)
615 FORK=ATOLS : FOKETP+K, ASCCMIDECNFS, K+1, 130 NEXTK
Fi FOKETRHL6, DT
625 FORK=1T0S : PFOKETP+16+K. ASCCMIDSC DS, K. 477 NEXTK
E30 SYSCALY (SYSCWT Y SYS(CLY
=% RETURN
260 REM INITIALIZE EOR DISK TRACK
318 FORI=aTOZE
878 READF
336 FOKEGRI+1. F
348 MEXTI
A58 RETURN
3568 DATALES, ABR, 133, 218, 162, 144
255 DATALZR, 219, 160, 0aR, 162, 626
878 DATALTT. 218, 873, 255, 145, 218
875 DATA200. 208, 247, 2308, 219, 262
836 UATRZOS. 242, A96
9B REM READ SINGLE DENSITY TRACK
I REM R=TRACK, B=TRAGK HALF
Wiz FRINTY)
O 963 PRINTREADING TRACK ";F: " DRIVE #4 “
WS POKEDY, 49
A FOKEMR. X : GOSUB999 : POKEMR, % GOSUES9S : FOKEMR, 3 : GNSLESSD

10-15

stk iotete sl ek
DENSITYCOPY
AR ke slofeok bl

BRSIC LISTING PRGE 8%

1.8 SYS(RSD

326 FOKETK, A

928 FPOKESR, &

348 PORKESB+1. (94163 +(B*if)
S8 FOKEER. @

958 POKEEB+L,: (9%16+10 3+ CRw1A)
IFE SYSIMOn

3z@e RETURN

99 FORK=1TO18 : NEXTK : RETURM

10-16

TP
DATAFILE
Papr——

BRSIC LISTING PAGE B1

1 REM SIZE MEMORY AVAILRABLE

2 TT=PEEK(SZ)

198 REM DATAFILE UTILITY FPROGRAM
118 REM COPYRIGHT 4979, COMPU/THINK
126 REM DEFINE PROGRAM VARIABLES
136 DIMSE(TTY

135 CC$=""

1948 R1$="LLLLLEBLELLELELELELELELELELLELELLEGRLEL"
145 FT$="FREE TRACK "+CHR$(255)+" "
1561 20$=" o —

288 REM DISKMON MEMORY LOCATIONS

218 CE=44976 :REM FILE FOUND SWITCH

226 CB=45008:REM BLOCK COUNT

23681 CM=45018:REM MODE SWITCH

248 CD=43776:REM DISK DIRECTORY

2568 CF=45624 :REM FILE INFORMATION

258 CT=45055:REM ABSOLUTE TRRACK

278 CC=45056:REM COMMAND TARBLE

238 REM MATINLINE ROUTINE

3e GOSURL460

326 PRIMTYPRESS C TO COPY DATA FILE®

32% PRINTYPRESS D TO DISPLAY DATA FILE"®
tw 338 PRINT"PRESS P TO FRINT DATA FILE"

348 GETAS : IFA$=""THENZ48

345 TFA$="C" THEN429Q

356 IFR$="D"THEN4160

3668 IFA$="P" THEN4280

37¥6 GOTOzRe

1188 REM PRINT LINE OF LISTING

1114@ $PRNT.PL#$

1128 PL=PL+1

1130 IFPLLCEBTHENRETURN

1148 PL$S="":$P, PL$ P, PL $F. FL#

1145 P, PL:$F. PL$:P, PL :P, PL :$P. FL$

1156 GOTO12086 .

120 REM FRINT PRGE HERDING

1205 PP=PP+1:PL=18

1720 PLE=LEFT$(Z0$, LENCDF$)) :$PRNT, PL$

1230 $PRNT. DF$

12498 PLS=LEFT$(Z0$, LENCDF$>) $FRNT, PL#

1258 PL$=" " $PRENT.PL$
1268 PL$=" " :$PRNT.PL$
1278 PL$="FILE INDEX = "+DI$+" FPRGE "+STR$(FP) :$P.FL#
1288 PL$=" " :$PRNT.PFL$
1298 PL$=" " $FPRNT.PL®

12939 RETURN
1460 REM FORMAT PET SCREEN
, - 14G5 PRINT®"; Ris; "
1442 FRINT"&&DATAFILE&E"
1428 FRINTTABC(S)Y; "COPYRIGHT 1973 COMPU/THINK"

10-17

#ofob oo i

DRTAFILE

Aok RNk

BASIC LISTING PRGE B2

144@ PRINTLEFT$(CCS. 25); X1$; LEFT$CCCS, 9 : RETURN
1568
1649
1699
2300

48za
4525
40z8
435
4540
434 2
4843
4345
43508

REM CLOSE FILE FOR MOD RERD
VL=PEEK(EE):VH=PEEK(CB+1):VT=PEEK(CF+16}:$CDISK:RETURN
RETURN

REM READ FROM DATA FILE

TFCSNCAYORCSNSTID THEN2326

S$=S$(SN7 : SN=SN+1 : RETURN

DX=D : DF $=SF § : GOSUB366E : SN=1,

S$RDISK, R$:S$SNI=LEFT$(R$+LEFT${EBS, 8A), 8@ : SN=GN+1,
IFLEFT$(R%, X)="EQF "THENZ356

IFR$=""THENZ3S58

IFSN<=TJTHEN23z@

GOSUBA68@ : SN=1 : GOTD2315

REM OPEN FILE FOR READ MOD

#0DISK, DF, "R", DF$. DI$: DX$=D1$
IFFEEK(CS)=2S5THENPRINT"FILE NOT FOUND ERROR":STOP
IFYT=ATHENZE99

i PDKECF+15;VT:SVS(CC+15):S?S(CC+2?2

POKECR. VL.: POKECB+1, VH
RETURN
REM MOD ONTO FILE FOR WRITE

! FODISK, DT, "R", DTS, DIs

IFFEEK(CS) C>2SSTHENZRRS

FODISK, DT, "W", DTS, DX$: RETURN

$ROISK: R¥: IFR$CS " THENZERS
=CD+(PEEKCCT %255 ~1

FORI=1TO25:POKET+I. ASC(MIDSCFTS, 1. 472 :NEXTI

R=PEEK{CF+16) : FOKECF+16., ¥~1

A=C(PEEK (CRI+PEEK(CB+1 »*256 -1 : GOSUBIS@@

FOKECE, L. : POKECE+1. K

FOKECHM, 2

RETURN

REM SEPARRTE MUMBER INTO BYTES

H=INT{R/25&>

L=A~-(H*256

RETURN

REM COPY ONE FILE TO ANQOTHER
VT=0:G0SUR1486

PRINT"COPY OPTION"

INFUT"FROM FILE NAME"; DF$
INPUT"FROM FILE DISK"; DF
INFUT"TO FILE NAME"; DT$
INFUT"TO FILE DISK": DT
FRINTYCOPYING FILEY

GOSUBZG6a

EN=@ :FORI=4TQTT

$RDISK, RE: IF(R$="" YOR(R$="EOF " > THEN4BSH
SFCI0=R$; SN=T

NEXTI

GOSUBLE6R : GOSUBZEE0

10-18

e sheobkafek
CDRTAFILE
Kook Aeokokskok

BRASIC LISTING FPRGE B3

4655 FORI=1TOSN

458 SUDISK, 5$(1)

48385 NEKTI

46783 $CDISK

4388 IFSN=TTTHEN48ZS

46199 GOTOZE8

4189 REM DISPLAY DATA FILE ON SCREEN
4162 GOSUBl4@é:RL=29

4185 FPRINT"DISPLAY OFPTION"

4187 INPUT"ENTER FILE NAME":; DF$

414.@ INPUT“ENTER FILE DISK":DF

4145 $ODISK. DF, "R", DF%, DI TC=0: k$=""
4179 SN=f:GOSUBL14806 PRINT" INDEX="; D1$:; ""
41.25 GOSUBS80E: IFPLE=""THEN4158

4130 SN=SH+1:PRINTPL$

4135 IFSNCAIZTHEN4LZD

4148 PRINT"RECORD COUNT="; TC; " PRESS SPRACE TOQ CONT"
4142 GETRS$: IFA$=""THEN4142

4145 GOTO4128

4156 $COISK

4155 PRINTYRECORD TOTAL="; TC

4166 GETA$: IFAS=""THEN4168

4199 GOTOZQH

4208 REM PRINT DATA FILE OM PRINTER

42812 GOSUR1496 : RL=88

42615 PRINT"PRINT OPTION"

4207 INFUT"ENTER FILE NAME": DF$

424.8 INFUT"ENTER FILE DISK"Y;DF)

4715 £0DISK, DF, "R". DF$, DI$:TC=0:R$=""
4228 PRINT"FRINTING" :PP=0:G0SUBL1Z00

4225 GOSLIBSRGR: IFPL$=""THEN4256

4238 G0SUBiARE: GOTO4225

4258 $CHLISK

4252 PL$=" " :GOSUB1i86:GOSUBL1B6

4255 PL$="RECORD TOTAL = "+STR$(TC): GOSUB11086
4299 GOTOZE8

SBEE REM READ RECORDS FROM FILE -
5618 IFR${""THENSBZS

SEzE $RDISK. R$: IFCR$=""J0R(R$="EOF ") THENFLS$="" RETURN
SE2S TC=TC+1

5620 IFLEN{R$)IC<RL+LTHENPL$=RS$ R$="" RETURN
S48 PLS=LEFT$C(R$, RLD

5845 RI=RIGHTH(R$, LEN(REI-RLO

D58 RETURMN

10-19

Aok o %
ELOCKTEST
R

BRSID LISTING PRGE &1

S PRINT"Y
1@ PRINT" MEMORY TEST PROGRAM:FSEUDD RANDOM DRTA®
28 REM BY RICHARD TOBEY COPYRIGHT &6-16/1978

39 PRINT®":PRINT" FOR FURTHER DESCRIPTION RUN 188@" : PRINT"
45 GOEUE 7es

186 INFUT"FROM BLOCK": &: INFUT*TO BLOCK"; B

120 POKE 176, 8:POKE 179, CA~15%16:POKE 18@, Bwd6—1
136 INPUT“# PRSSES, 6-255, 8=CONTINUOLS"; P

196 P=INTCP) IF P>255 GOTO 13@

156 IF P>@ THEN C=8:GOTO 17@

168 C=1:P=255:REM NO PRSSES=CONT

1768 INPUT"DELAY SECONDS"; D

199 Q=A:R=F

198 POKE 181, 8

260 SYSC822) (REM START FILL

218 IF D=B GOTO 256

228 ¥=D :REM DELAY

230 FOR ®=1 TO 930:NEXT

24@ W=v-1:IF v<>8 GOTO 23@

250 SYS(848) REM START TEST

268 IF PEEK{1&7)=8 GOTO 360 :REM ERROR TEST

265 FRINT"®

278 PRINT"ERROR IN BLOCK": INTCPEEKCASX) 163+

275 PRINT"¢ PAGE"; PEEKCL8XX; 3", "AT LINE"; PEEKC182)
238 PRINT"" :PRINT"TEST DATR " PEEKC1SS), "MEMORY “: PEEKCIRE) : FRINT" "
258 PRINT"NEXT LOCATION 2"

@ GET C$:IFCH="" GOTO 66

2@ IF C$="Yy" THEN SYSC908):GOTO 268

3R PRINT"" :PRINT"RETEST?"

3% GET C$:IF C$="" . GOTO 330

348 IF C$="¥" GOTO 186

356 END _

368 Q=E+1:PRINT"PRSS™: @, "TIME "; T1$

378 R=R-1.:1F R<>@ GOTO 49@

3@ IF C=1 GOTO 48@:REM CONT FLAG SET

298 FRINT'TEST COMFLETE":GOTO 328

488 P=255:GOTO 190

798 REM SUBROUTINE TO LOAD MACHINE CODE

718 REM INTO THE SECOND CRSSETTE BUFFER

728 FOR I=832 TO 912:RERD MW:POKE L. W:NEXT

736 RETURN

740 DATA 166, B, 32, 102, 3, 32, 144, 2

756 DATA 145, 182, 32, 118, 3, 208, 246, 96

756 DATA 166, 8. 32, 182, 2, 22, 114, 3

778 DATR 289, 182. 268, 37, 32, 118, 3. 208

788 DATA 244, 169, 8, 133, 187, 96, 165, 178

796 DATA 133, 182, 165, 179, 132, 183, 96, 165

808 DATA 182, €3, 183. 69, 181, 96, 239, 182

g:lé DATA 208, 5. 230, 63, 165, 63, 197, 66

828 DATA 96, 133, 71, 477, 68, 133, 72, 163

10-20

7
/ oo koo e
BL.OCKTEST
sifobseokdeok K

BRSIC LISTING FPAGE Bz

831 DATA 255, 133, 72, 96, 166, 0, V6, 92, %

1365
1085
1&5ia
1620
16438
1948
158
1360
1@7a
1.0A
1599
1106
1118@
1126
1138
11.4@
11.56
1le€@

FRINT"" :PRINT"THIS ROUTINE FILLS THE MEMORY WITH A
FRINTYDIFFERENT PSEUDD RANDOM FRTTERN
PRINT"EACH PASS, THEN AFTER A DELAY PERIOD,
FRINT"GENERATES THE PRTTERM AGHRIMN AND
FRINT"COMPARES IT TO THE COMTENTS OF MEMORY.
PRINT"THUS CHECKING FOR POSSIBLE FAILURE
PRINT"MODES. INCLUDING BRAD CHIPS, STUCK
PRINT"ADDRESSES, TNADERURTE REFRESH ETC.
PRINT"" FRINT" T0O RUN THE PROGRAM
FRINT'BLOCKS ARE 4K BYTES. TO TEST THE 3RD
FRINT"THRU &TH BLOCKS OF MEMORY<16K RDDED?
FRINT"USING SELECTS 2 THRU S, (DEC 8192-2457&0
FRINT"FROM BLOCK IS =, WHILE TO BLOCK IS &
FRINT"THE # OF PRSSES MAY BE FROM 1 TO 255
PRINT"ENTERING @ PRSSES GIWES CONTINUOUS
PREINT*TESTING

PRINT"ALSD DELARY MAY BE ENTERED IN SECONDS
FRINT"@=NO DELAY

10-21

